PUT SMM HANDLERS IN LINUX,
NOT COREBOOT

QUTLINE

What is SMM?

SMM 1in LinuxBIOS

SMM 1in coreboot

Why it will never die

Why persistent firmware code can be dangerous
The RISC-V 1inspiration

An alternative: Linux can handle the SMIs
Proof of concept and questions

SYSTEM MANAGEMENT MODE

e Introduced with 486 to support power management

(@)

(@)

Close lid, what happens? DOS 1is not going to handle sleep!
Backward compatibility has to work

e Hence, need:

(@)

(@)
(@)
(@)

(@)

Higher priv level than Ring 0 (i.e. beyond DOS)
Operations, e.g. sleep, that run without Ring 0 knowing it
Additional interrupts vectored to these operations
Operations must be deeply hidden so Ring 0 does not break them
m I.e. in a memory space Ring 0 can never see
m Protected by one-way-locking registers
No state leakage across the boundary, esp. to Ring 0

e Design based on these requirements ends up at SMM
e But note: in the beginning, it’s all about DOS

EVIL-UTION

e If there 1is a place to put secret code that can never be
seen and is highest privilege, will vendors use 1t?

e Well, duh ...

e If secret code is written to lowest-common-denominator
standards, and handed to random vendors who put in random
features designed for customer lock-in, will it be be
full of 0-days and nasty bugs?

e That question answers itself

e For security, SMM ds a serious problem

e So we want it either gone or under our control

ELIMINATING SMM

e No feature ever leaves the x86
o See: DAA, the unused opcode that eats 1/256 of the space

e In some ways, it’s easy: don’t enable it, lock the
memory, lock the register that disables it

e In other ways, it’s hard: there might be something about
your hardware that would benefit from having it

e SMM model 1infects other architectures, such as RISC-V

e So this talk is about owning it, not killing it
o Maybe RISC-V community will listen?

e First, a quick overview of SMM, then a description of our
prototype, then some questions

DIGRESSION: YOU DON T ALWAYS NEED SMM

e Intel rep, 2004, to us at Los Alamos: “You can’t build a
working server without an SMM handler?”

e Us: “Linux NetworX’s 100K+ systems don’t agree”

e ALl SMM ever did in my old world (HPC) was cause trouble

o Performance and security 1issues
e It was not even part of LinuxBIOS until 2006, 7 years
after the project began!

e But a 1945-based laptop needed 1it, so ..
o It’s all Stefan’s fault

MM BASICS (DISCUSSION FOR 1945/035, 32-BT)

At PO/R hardware sets SMBASE to 0Ox30000 on all cores
On SMI, state is saved at SMBASE + Oxfx00 (OxfcOO 64-bit)

o The actual offset used to be somewhat magic but is now standard
o Sensible to assume worst case, i.e. 0x400

Code (“stub”) starts at SMBASE + 0Ox8000

Idea seems to be that stub would do per-core setup and
call handler at SMBASE (i.e. 0x30000)

How do you differentiate cores for stub and save state?
By manipulating SMBASE

Different SMBASE -> different state and stub pointers
Segment base with assumed 64K (or other) limit

DIGRESSION: MANIPULATING SMBASE

Per-core SMBASE 1is a kind-of MSR invented before MSRs
Defines entry point and save state area

Access to SMBASE register is via SMBASE + Oxfefc (Intel)
Change SMBASE, address of save state/entry point changes
So the next SMI goes elsewhere

See coreboot sx/cx/xx/s*x/smmrelocate.S

Note this particular version must be serialized
o Save state area of SMI is same if SMBASE is 0x30000

Again: SMBASE is MMIO-accessed, per-core “MSR”
Strongly enforces hidden nature of SMM

FIRST RULE OF SMM CLUB 1S NEVER TALK ABOUT SMM CLUB

You can only manipulate SMBASE per-core register in SMM
So to move SMRAM area, you also have to change SMBASE
To change SMBASE, you have to go into SMM

To go into SMM, you need an SMI or write to Oxb2

Then you can change the hidden SMBASE

So next time you go to new SMBASE

But when you change it, uses previous SMBASE for RSM

Am I the only one who finds this all a bit weird?

SMBASE TN COREBOOT AS DESCRIBED IN
§% /(% /X*/§* /SMMRELOCATE .S

Oxafc00
Oxaf800
Core 0

SMBASE
0xa0000

part of
BsP init | 700

PER-CORE SMMRELOCATE. S ACTIONS (FOR 1145, £1C)

Determine SMBASE MMIO location

Compute per-core SMBASE value

Save it in MMIO location

Clear SMSTS, PM1STS, EOS

RSM

The code has already been set up at 0xab®000 by coreboot
Back in ramstage, Ring 0 code locks down SMRAM and some
other control bits in chipset registers

SMM HANDLER AT OXADO00

Actual implementation not completely consistent with
comments in smmrelocate.S

You should read both; handler 1is really well designed
SMI saves data at SMBASE + OxFCOO (OxXAFCOO on core 0)
Vectors to SMBASE + 0Ox8000 (0Oxa8000 on core 0)

The actual stub in smmhandler.S is quite nice!

o The 1individual code is just a far jmp and done
o Stack starts at SMBASE + 0x8010

Common code does everything else based on lapicid
Has mitigation for LAPIC overlap reported in 2015!
Shifts to protected mode and jumps to 32-bit handler

SOME QUESTIONS

e Where to run SMM code

o Is SMI# higher priority than any Ring 0 interrupt including NMI#?
o Will SMI# dinterrupt ALL Ring 0 activities? (i.e. unblockable)

o Can we just run all the SMM code on BSP?

o If yes, why not just run all SMM on the BSP?

e What is the origin of the “all cores halt” for SMM?

o Is it because vendor SMM code is not SMP-safe?
o Linux 1is SMP-safe
o If SMI# goes to SMP-safe code, why have all cores spin in SMM?

e Big question: what blocks us from treating SMI# as a
super high priority 1interrupt for the BSP?

[INUX IMPLEMENTATION QUESTIONS

e Disable SMM setup in coreboot?

o Leave it there for now. Just don’t lock it down.
e SMP 1issue

o That’s for you to tell me

e Run special SMM handler in linux that is above, outside,

beyond the kernel as in firmware?
o No. use 64-bit trampoline to get back into the kernel proper
e How to structure the code

o For now, pull chipset code into linux

o This is OK IMHO because it seems the SMM chipset stuff is being made
very generic

HILES CHANGED/ADDED

arch/x86/{Kbuild,Kconfig} arch/x86/realmode/rm/chipset/i82801ix.h
arch/x86/include/asm/realmode.h arch/x86/realmode/rm/chipset/i82801ixnvs.h
arch/x86/realmode/Makefile arch/x86/realmode/rm/smmhandler.S
arch/x86/realmode/init.c arch/x86/realmode/rm/smmrelocate.S
arch/x86/realmode/rm/Makefile arch/x86/realmode/linuxbios.c
arch/x86/realmode/rm/header.S arch/x86/realmode/i82801l1ix.c

arch/x86/realmode/rm/trampoline_64.S

ax/x*/realmod/rm/trampoline_common.S

QUICK ASIDE ON FILE STRUCTURE

e Kconfig/Kbuild
o New config variable: LINUXBIOS
e arch/x86arch/x86/include/asm
o Added smm struct members to real_mode_header
e arch/x86/realmode
o Linux support code for realmode, built as part of Linux
e arch/x86/realmode/rm
o Standalone 16-bit stubs and trampolines, assembled into blobs 1in
realmode.bin and then compiled into a struct
e arch/x86/realmode/rm/chipset

o From coreboot, needed for a few of the chipset-specific bits

CONNECTING IT ALL TOGETHER

Change realmode/rm/ to build 16-bit smm stub and handlers
Set up Linux-based code in realmode/

Add options to Kconfig

Add more files to Kbuild

CHANGING M/

Makefile:

+realmode-$ (CONFIG_LINUXBIOS) += smmrelocate.o
+realmode—-$ (CONFIG_LINUXBIOS) += smmhandler.o
+targets += $(realmode-y) S$S(smm-y)

+SMM_0BJS = $(addprefix $(obj)/,$(smm-y))

A NOTE ON LINUX REALMODE /&M BLOBS

e Write your .S file(s) with exported symbols named pa_xxx
o E.g. pa_smm_start

e Add pa_ symbols to a*x/x86/rx/rm/header.S

o This defines initializers for a struct
.S are assembled

Nm | sed pipeline automagically makes pasyms.h

That is included in realmode.lds.S

A few more passes create realmode.elf

Then realmode.relocs, realmode.bin

Incorporated into kernel via a*x/x*/rx/rmpiggy.S

rm/ does not assume fixed addresses but smm 1is special

USING THE BLOBS

e Setup: ax/x*/r*x/linuxbios.c calls smm_init()
o Yep, the coreboot smm_init() works fine 1in kernel
e Code 1is mostly the same, save

o Have to map in 0xa0000
o Printk looks different
o More debugging prints :-)

Not SMP-ready yet!
Due to my lack of understanding only recently repaired
One plan: let coreboot do most setup, but not lock memory

Just change the handler at 0xaf000

o Doesn’t help NERF (i.e. when Linux embedded in UEFI)
o Can’t KASLR the SMBASE

SMMHANDLER 15 VERY DIFFERENT ...

Mainly adapted from linux 64-bit trampoline

With minor changes due to being in SMM

One major 1issue is that we have to run with nonxe=off
Bug in Linux trampoline

ACTUAL SMM HANDLER IN KERNEL

void smm_test(void)

{

printk("well here I am\n");

}

Exciting eh?

DEMO TIME

QUESTIONS

QUESTIONS

e Why do this?
o If we can’t kill SMM, we have to co opt it

o SMM 1is appearing on other architectures :—(
e SMP?

o Yeah
e Model?

o Program as though it’s a nested NMI?

e What about what SMM does? Sleep?

o Great question!

WHERE

https://github.com/rminnich/coreboot/tree/LinuxSMM

https://github.com/rminnich/linux/tree/smmfromlinux

Must have at least gemu v2.10

Linux config: config_smi_linuxbios

Coreboot config: config-linuxbios

To run in QEMU, use QRUN file in coreboot

You need u-root if you want to use my initramfs, see
u-root.tk and check with me on how to build (needs Go)

If you don’t use u-root, then just boot and do
o Outb 0xb2 0
o However you do IO

https://github.com/rminnich/coreboot/tree/LinuxSMM
https://github.com/rminnich/linux/tree/smmfromlinux

