
Put SMM handlers in Linux,
not coreboot

Ron Minnich, Google
European coreboot Conference

Outline
● What is SMM?
● SMM in LinuxBIOS
● SMM in coreboot
● Why it will never die
● Why persistent firmware code can be dangerous
● The RISC-V inspiration
● An alternative: Linux can handle the SMIs
● Proof of concept and questions

System management mode
● Introduced with 486 to support power management

○ Close lid, what happens? DOS is not going to handle sleep!
○ Backward compatibility has to work

● Hence, need:
○ Higher priv level than Ring 0 (i.e. beyond DOS)
○ Operations, e.g. sleep, that run without Ring 0 knowing it
○ Additional interrupts vectored to these operations
○ Operations must be deeply hidden so Ring 0 does not break them

■ I.e. in a memory space Ring 0 can never see
■ Protected by one-way-locking registers

○ No state leakage across the boundary, esp. to Ring 0

● Design based on these requirements ends up at SMM
● But note: in the beginning, it’s all about DOS

Evil-ution
● If there is a place to put secret code that can never be

seen and is highest privilege, will vendors use it?
● Well, duh ….
● If secret code is written to lowest-common-denominator

standards, and handed to random vendors who put in random
features designed for customer lock-in, will it be be
full of 0-days and nasty bugs?

● That question answers itself
● For security, SMM is a serious problem
● So we want it either gone or under our control

Eliminating SMM
● No feature ever leaves the x86

○ See: DAA, the unused opcode that eats 1/256 of the space

● In some ways, it’s easy: don’t enable it, lock the
memory, lock the register that disables it

● In other ways, it’s hard: there might be something about
your hardware that would benefit from having it

● SMM model infects other architectures, such as RISC-V
● So this talk is about owning it, not killing it

○ Maybe RISC-V community will listen?

● First, a quick overview of SMM, then a description of our
prototype, then some questions

Digression: you don’t always need SMM
● Intel rep, 2004, to us at Los Alamos: “You can’t build a

working server without an SMM handler”
● Us: “Linux NetworX’s 100K+ systems don’t agree”
● All SMM ever did in my old world (HPC) was cause trouble

○ Performance and security issues

● It was not even part of LinuxBIOS until 2006, 7 years
after the project began!

● But a i945-based laptop needed it, so …
○ It’s all Stefan’s fault

SMM basics(discussion for i945/q35, 32-bit)
● At PO/R hardware sets SMBASE to 0x30000 on all cores
● On SMI, state is saved at SMBASE + 0xfx00 (0xfc00 64-bit)

○ The actual offset used to be somewhat magic but is now standard
○ Sensible to assume worst case, i.e. 0x400

● Code (“stub”) starts at SMBASE + 0x8000
● Idea seems to be that stub would do per-core setup and

call handler at SMBASE (i.e. 0x30000)
● How do you differentiate cores for stub and save state?
● By manipulating SMBASE
● Different SMBASE -> different state and stub pointers
● Segment base with assumed 64K (or other) limit

Digression: manipulating SMBASE
● Per-core SMBASE is a kind-of MSR invented before MSRs
● Defines entry point and save state area
● Access to SMBASE register is via SMBASE + 0xfefc (Intel)
● Change SMBASE, address of save state/entry point changes
● So the next SMI goes elsewhere
● See coreboot s*/c*/x*/s*/smmrelocate.S
● Note this particular version must be serialized

○ Save state area of SMI is same if SMBASE is 0x30000

● Again: SMBASE is MMIO-accessed, per-core “MSR”
● Strongly enforces hidden nature of SMM

First rule of SMM club is never talk about SMM club
● You can only manipulate SMBASE per-core register in SMM
● So to move SMRAM area, you also have to change SMBASE
● To change SMBASE, you have to go into SMM
● To go into SMM, you need an SMI or write to 0xb2
● Then you can change the hidden SMBASE
● So next time you go to new SMBASE
● But when you change it, uses previous SMBASE for RSM
● Am I the only one who finds this all a bit weird?

Smbase in coreboot as described in
s*/c*/x*/s*/smmrelocate.S

Common Handler at 0xa0000

Core 0 save state - SMBASE0+fc00
Core 1 save state - SMBASE1+f800

Core 1 stub and stack - SMBASE1+0x8000
Core 0 stub and stack - SMBASE0+0x8000 0xa8000

0xa7c00

0xafc00
0xaf800

Core 0
SMBASE
0xa0000
Runs as
part of
BSP init

Core 1
SMBASE
0xbfc00
Runs as
part of
AP init

Core 2
SMBASE
0xbf800
Runs as
part of
AP init

.

.

Per-core smmrelocate.S actions (for i945, etc)
● Determine SMBASE MMIO location
● Compute per-core SMBASE value
● Save it in MMIO location
● Clear SMSTS, PM1STS, EOS
● RSM
● The code has already been set up at 0xa0000 by coreboot
● Back in ramstage, Ring 0 code locks down SMRAM and some

other control bits in chipset registers

SMM handler at 0xa0000
● Actual implementation not completely consistent with

comments in smmrelocate.S
● You should read both; handler is really well designed
● SMI saves data at SMBASE + 0xFC00 (0xAFC00 on core 0)
● Vectors to SMBASE + 0x8000 (0xa8000 on core 0)
● The actual stub in smmhandler.S is quite nice!

○ The individual code is just a far jmp and done
○ Stack starts at SMBASE + 0x8010

● Common code does everything else based on lapicid
● Has mitigation for LAPIC overlap reported in 2015!
● Shifts to protected mode and jumps to 32-bit handler

Some questions
● Where to run SMM code

○ Is SMI# higher priority than any Ring 0 interrupt including NMI#?
○ Will SMI# interrupt ALL Ring 0 activities? (i.e. unblockable)
○ Can we just run all the SMM code on BSP?
○ If yes, why not just run all SMM on the BSP?

● What is the origin of the “all cores halt” for SMM?
○ Is it because vendor SMM code is not SMP-safe?
○ Linux is SMP-safe
○ If SMI# goes to SMP-safe code, why have all cores spin in SMM?

● Big question: what blocks us from treating SMI# as a
super high priority interrupt for the BSP?

Linux implementation questions
● Disable SMM setup in coreboot?

○ Leave it there for now. Just don’t lock it down.

● SMP issue
○ That’s for you to tell me

● Run special SMM handler in linux that is above, outside,
beyond the kernel as in firmware?

○ No. use 64-bit trampoline to get back into the kernel proper

● How to structure the code
○ For now, pull chipset code into linux
○ This is OK IMHO because it seems the SMM chipset stuff is being made

very generic

Files changed/added
arch/x86/{Kbuild,Kconfig}

arch/x86/include/asm/realmode.h

arch/x86/realmode/Makefile

arch/x86/realmode/init.c

arch/x86/realmode/rm/Makefile

arch/x86/realmode/rm/header.S

arch/x86/realmode/rm/trampoline_64.S

a*/x*/realmod/rm/trampoline_common.S

arch/x86/realmode/rm/chipset/i82801ix.h

arch/x86/realmode/rm/chipset/i82801ixnvs.h

arch/x86/realmode/rm/smmhandler.S

arch/x86/realmode/rm/smmrelocate.S

arch/x86/realmode/linuxbios.c

arch/x86/realmode/i82801ix.c

Quick aside on file structure
● Kconfig/Kbuild

○ New config variable: LINUXBIOS

● arch/x86arch/x86/include/asm
○ Added smm struct members to real_mode_header

● arch/x86/realmode
○ Linux support code for realmode, built as part of Linux

● arch/x86/realmode/rm
○ Standalone 16-bit stubs and trampolines, assembled into blobs in

realmode.bin and then compiled into a struct

● arch/x86/realmode/rm/chipset
○ From coreboot, needed for a few of the chipset-specific bits

Connecting it all together
● Change realmode/rm/ to build 16-bit smm stub and handlers
● Set up Linux-based code in realmode/
● Add options to Kconfig
● Add more files to Kbuild

Changing rm/
Makefile:

+realmode-$(CONFIG_LINUXBIOS) += smmrelocate.o

+realmode-$(CONFIG_LINUXBIOS) += smmhandler.o

+targets += $(realmode-y) $(smm-y)

+SMM_OBJS = $(addprefix $(obj)/,$(smm-y))

A note on linux realmode/rm blobs
● Write your .S file(s) with exported symbols named pa_xxx

○ E.g. pa_smm_start

● Add pa_ symbols to a*/x86/r*/rm/header.S
○ This defines initializers for a struct

● .S are assembled
● Nm | sed pipeline automagically makes pasyms.h
● That is included in realmode.lds.S
● A few more passes create realmode.elf
● Then realmode.relocs, realmode.bin
● Incorporated into kernel via a*/x*/r*/rmpiggy.S
● rm/ does not assume fixed addresses but smm is special

Using the blobs
● Setup: a*/x*/r*/linuxbios.c calls smm_init()

○ Yep, the coreboot smm_init() works fine in kernel

● Code is mostly the same, save
○ Have to map in 0xa0000
○ Printk looks different
○ More debugging prints :-)

● Not SMP-ready yet!
● Due to my lack of understanding only recently repaired
● One plan: let coreboot do most setup, but not lock memory
● Just change the handler at 0xa0000

○ Doesn’t help NERF (i.e. when Linux embedded in UEFI)
○ Can’t KASLR the SMBASE

Smmhandler is very different ...
● Mainly adapted from linux 64-bit trampoline
● With minor changes due to being in SMM
● One major issue is that we have to run with nonxe=off
● Bug in Linux trampoline

Actual smm handler in kernel
void smm_test(void)

{

 printk("well here I am\n");

}

Exciting eh?

Demo time

questions

Questions
● Why do this?

○ If we can’t kill SMM, we have to co opt it
○ SMM is appearing on other architectures :-(

● SMP?
○ Yeah

● Model?
○ Program as though it’s a nested NMI?

● What about what SMM does? Sleep?
○ Great question!

●

Where
● https://github.com/rminnich/coreboot/tree/LinuxSMM
● https://github.com/rminnich/linux/tree/smmfromlinux
● Must have at least qemu v2.10
● Linux config: config_smi_linuxbios
● Coreboot config: config-linuxbios
● To run in QEMU, use QRUN file in coreboot
● You need u-root if you want to use my initramfs, see

u-root.tk and check with me on how to build (needs Go)
● If you don’t use u-root, then just boot and do

○ Outb 0xb2 0
○ However you do IO

https://github.com/rminnich/coreboot/tree/LinuxSMM
https://github.com/rminnich/linux/tree/smmfromlinux

