Run upstream coreboot on an ARM Chromebook

Paul Menzel (Max Planck Institute for Molecular Genetics)

October 26, 2017

Thanks

Who am 17

» (Economic) Mathematician by studies at TU Berlin
> Free Software enthusiast
» Active in coreboot since 2005 (still LinuxBIOS back then)

» System architect at Max Planck Institute for Molecular
Genetics

https://www.tu-berlin.de/
https://www.coreboot.org/
https://www.molgen.mpg.de/
https://www.molgen.mpg.de/

Google Chromebooks

Architectures

1. x86
2. ARM
3. MIPS

x86

Currently only Intel based devices

BLOB: Intel FSP (Firmware Support Package) (formerly MRC)
BLOB on co-processor Intel Management Engine

BLOB: Microcode updates

o=

x86/Intel — Graphics driver in Linux

BLOBs required by recent Intel graphics devices:

$ 1s /1lib/firmware/i915/

bxt_dmc_verl_07.bin skl_dmc_verl_23.bin
bxt_dmc_verl.bin skl _dmc_verl 26.bin
bxt_guc_ver8_7.bin skl_dmc_verl.bin
bxt_huc_ver01_07_1398.bin skl_guc_verl.bin
kbl_dmc_verl_0O1.bin skl_guc_ver4.bin
kbl _dmc_verl.bin skl_guc_ver6_1.bin
kbl_guc_ver9_14.bin skl_guc_ver6.bin

kbl _huc_ver02_00_1810.bin skl_huc_ver01_07_1398.bin

x86/Intel — Ecosystem

1. More payloads in coreboot

2. Good eco system
2.1 https://mrchromebox.tech/ — custom images
2.2 https://johnlewis.ie/ — custom images

2.3 GalliumOS — GNU/Linux distribution for x86 Chrome OS
devices

https://galliumos.org/

ARM

1. Small bootblock fused in system

No oA~ wbd

AP Boot ROM: AP_BL1

Typically, this is the first code to execute on the AP
and cannot be modified. Its primary purpose is to
perform the minimum intialization necessary to load
and authenticate an updateable AP firmware image
into an executable RAM location, then hand-off
control to that image.

No legacy, easier to set up

No co-processor

U-Boot, Barebox as free alternatives

Bad user space situation with BLOBs for graphics drivers
Few payloads

No ecosystem

https://github.com/ARM-software/arm-trusted-firmware/wiki/ARM-Trusted-Firmware-Image-Terminology#ap-boot-rom-ap_bl1

Samsung Chromebook Plus (RK3399)

See thread Current, BLOB free laptop available Europe? on
coreboot mailing list

» Device with Rockchip RK3399, but only available in the USA
» No BLOBs in firmware
» Mali T860MP4 GPU

Linux support

BLOBs required for

hardware video decoding
Wi-Fi and Bluetooth
GPU support

Webcam

vV vyVvyy

https://mail.coreboot.org/pipermail/coreboot/2017-May/084389.html
https://archlinuxarm.org/platforms/armv8/rockchip/samsung-chromebook-plus
http://opensource.rock-chips.com/wiki_Graphics

Acer Chromebook R 13

Specifications

Processor
Cache

RAM
Format
Display size
Display
Resolution
IGD:
eMMC
Dimensions
Weight
Battery time
Capacity

Mediatek MT8173C 4x 2.10 GHz

1 MB

4 GB LPDDR3, PC3L-12800 (1600MHz)
2inl Convertible

33 cm (13,3")

Multi-Touch Full-HD IPS Display w/ LED backlight
1920 x 1080 Pixel (Full HD)

PowerVR GX6250

32 GB

326 x 228 x 15,5 mm (B x T x H)

1,49 kg

up to 12 hours

4.670 mAh

» On October 24th, 2017, 384 € at notebooksbilliger.de

https://www.notebooksbilliger.de/acer+chromebook+r13+cb5+312t+k0yk

BLOB status
No BLOBs

» Chrome EC for Embedded Controller as on all Chrome OS
devices

BLOBs

» PCM firmware in ARM Trusted Firmware
» Maybe USB C device
» Maybe ANX7688: PD + HDMI—DP converter

It contains a firmware that we update from the
AP-FW, at boot time, which is the only reason to
have a driver for it in depthcharge.

See commit 9859ach5 (anx7688: Add support for ANX7688) in
Depthcharge.

BLOB status — Linux support

hardware video decoding

Wi-Fi and Bluetooth

GPU support (PowerVR GX6250)
Webcam

vVvyYyywy

Google Oak

» Google Oak reference design

src/mainboard/google/oak/$ 1s

boardid.c gpio.h romstage.c
board_info.txt Kconfig sdram_configs.c
bootblock.c Kconfig.name sdram_inf
chromeos.c mainboard.c tpm_tis.c
chromeos.fmd Makefile.inc

devicetree.cb memlayout.ld

src/mainboard/google/oak/$ git grep config Kconfig.name
Kconfig.name:config BOARD_GOOGLE_OAK
Kconfig.name:config BOARD_GOOGLE_ELM
Kconfig.name:config BOARD_GOOGLE_HANA
Kconfig.name:config BOARD_GOOGLE_ROWAN

Google Elm

» Acer Chromebook R 13 is Google Elm variant of Google Oak

TLDR

$ make crossgcc-arm crossgcc-aarch64 CPUS=160
$ make menuconfig

Select Mainboard — Google EIm, Chipset — ChromeOS — Build
for ChromeOS, and Payload — Depthcharge

$ make

Copy to Chromebook, deactivate write protection.

$ flashrom -p internal -w coreboot.rom

Libettereboot

New build system for Libreboot written by Paul K. with
improvement patches.

$ git clone https://git.code.paulk.fr/libettereboot.git
$ cd libettereboot
$ for project in coreboot \
depthcharge \
vboot \
arm-trusted-firmware
do
./libreboot download "$project"
done
$ cd sources/arm-trusted-firmware
$ git revert HEAD
$ cd ..
$./libreboot cook coreboot depthcharge elm

Board status

» to-do: Upload to board status repository

» git clone
https://review.coreboot.org/board-status

» Currently empty
$ 1s google/

butterfly 1link parrot slippy
falco panther peppy stout

Longer version

Developer mode and write protection

Developer mode

1. Key combination
2. Ctrl +d
3. Data is deleted

Now type shell in Crosh Shell to get GNU Bash.

Write protection

1. Open device
2. Remove screw

Opened device

Figure 1. Opened Acer Chromebook R 13

Look at shipped image

$ cbfstool cb.rom print
cb.rom: 1024 kB, bootblocksize 4, romsize 1048576,
alignment: 64 bytes, architecture: unknown

Name Offset Type Size
cbfs master header 0x20000 cbfs header 32
fallback/romstage 0x20080 stage 31797
fallback/ramstage 0x27d00 stage 39764
config 0x318c0 raw 382
revision 0x31a80 raw 560
fallback/bl31 0x31d00 stage 14947
fallback/verstage 0x357c0 stage 33894
locale_it.bin 0x3dc80 raw 9384 (...

[...]

Look at shipped image cont.

[...]

vbgfx.bin

[...]

locales

[...]
fallback/payload
u-boot.dtb
(empty)

header pointer

0x457c0

0x9£400

0xc6a40
Oxdbe40
Oxdca40
OxfffcO

raw
raw

payload
mrc_cache
null

cbfs header

21564 (...

141 (166 ...

86965
2964
144728
4

Components

1. Chrome OS verified boot: Vboot
2. ARM Trusted Firmware

https://github.com/ARM-software/arm-trusted-firmware

Vboot

1. Very good documentation in
Documentation/Intel/vboot.html

Four sections needed for Vboot.

Read-only section

Google Binary Blob (GBB) area
Read/write section A
Read/write section B

N =

RO section contains CBFS with required pieces for system recovery.

ARM Trusted Firmware

ARM Trusted Firmware provides a reference
implementation of secure world software for ARMvS-A,
including a Secure Monitor executing at Exception Level 3
(EL3). It implements various ARM interface standards,
such as:

The Power State Coordination Interface (PSCl)
Trusted Board Boot Requirements (TBBR, ARM
DENO0006C-1)

SMC Calling Convention

System Control and Management Interface

vy

vy

As far as possible the code is designed for reuse or porting
to other ARMv8-A model and hardware platforms.

ARM will continue development in collaboration with
interested parties to provide a full reference
implementation of Secure Monitor code and ARM
standards to the benefit of all developers working with
ARMvVS-A TrustZone technology.

License

» BSD-3-Clause

Firmware in ARM TF on MT8173

Libettereboot lists the BLOBs below.

$ more projects/arm-trusted-firmware/configs/blobs
plat/mediatek/mt8173/drivers/spm/spm_hotplug.c
plat/mediatek/mt8173/drivers/spm/spm_mcdi.c
plat/mediatek/mt8173/drivers/spm/spm_suspend.c
plat/rockchip/rk3368/drivers/ddr/rk3368_ddr_reg_. ..

Firmware System Power Manager (SPM) in MT8173
See plat/mediatek/mt8173/drivers/spm/spm_hotplug.c.

System Power Manager (SPM) is a hardware module,
which controls cpu or system power for different power
scenarios using different firmware. This driver controls the
cpu power in cpu hotplug flow.

[...]

/***=

* PCM sequence for CPU hotplug
sk sk sk ok o ok sk sk sk ok ok ok ok sksk sk ok ok sk sk sk sk s ok sksk sk sk ok sksksk sk s ok sksk sk sk ke sk sk sk sk sk s ok sk sk sk ok

static const unsigned int hotplug_binary[] = {
0x1900001f, 0x1020020c, 0x1950001f, 0x1020020c, Ox:
0xe1000005, 0x1910001f, 0x10006720, 0x814c9001, Oxc

spm__mcdi.c

System Power Manager (SPM) is a hardware module,
which controls cpu or system power for different power
scenarios using different firmware. This driver controls the
cpu power in cpu idle power saving state.

[...]

static const unsigned int mcdi_binary[] = {
0x1a10001f, 0x10006b04, 0x1890001f, 0x10006b6c, Ox!
0x18d0001f, 0x10006210, 0x81002001, 0xd82001c4, Ox:

spm__suspend.c

System Power Manager (SPM) is a hardware module,
which controls cpu or system power for different power
scenarios using different firmware. This driver controls the
system power in system suspend flow.

[...]

/KK o Kok ok ok oK ok o oK ok o oK o K ok oK ok oK oK oK ok o oK o K ok oK ok oK oK K ok o oK ok K ok oK ok o oK oK ok o oK ok K
* PCM sequence for cpu suspend
sk ook o K ok o oK ok oK oK oK ok oK oK o oK ok o oK o K oK oK ok o oK o K ok o ok ok K ok oK ok oK ok o K ok o oK ok ok ok ok K ok
static const unsigned int suspend_binary_ca7[] = {
0x81£58407, 0x81£68407, 0x803a0400, 0x803a8400, Ox:
0x80300400, 0x80318400, 0x80328400, 0xald28407, Ox!

Operating systems

1. Chrome OS
2. Arch Linux
3. Debian GNU/Linux

Chrome OS

» Ships Linux 3.18
» Boot in 10 seconds with shipped firmware

Depthcharge

» to-do: Configure default boot

FMAP regions and fallback

» Goal: Similar setup to shipped image with fallback

Questions?

	Thanks
	Google Chromebooks
	Acer Chromebook R 13
	Longer version
	Questions?

